Characterization of endothelium-derived hyperpolarizing factor in the human forearm microcirculation.
نویسندگان
چکیده
The identity of endothelium-dependent hyperpolarizing factor (EDHF) in the human circulation remains controversial. We investigated whether EDHF contributes to endothelium-dependent vasomotion in the forearm microvasculature by studying the effect of K+ and miconazole, an inhibitor of cytochrome P-450, on the response to bradykinin in healthy human subjects. Study drugs were infused intra-arterially, and forearm blood flow was measured using strain-gauge plethysmography. Infusion of KCl (0.33 mmol/min) into the brachial artery caused baseline vasodilation and inhibited the vasodilator response to bradykinin, but not to sodium nitroprusside. Thus the incremental vasodilation induced by bradykinin was reduced from 14.3 +/- 2 to 7.1 +/- 2 ml x min(-1) x 100 g(-1) (P < 0.001) after KCl infusion. A similar inhibition of the bradykinin (P = 0.014), but not the sodium nitroprusside (not significant), response was observed with KCl after the study was repeated during preconstriction with phenylephrine to restore resting blood flow to basal values after KCl. Miconazole (0.125 mg/min) did not inhibit endothelium-dependent or -independent responses to ACh and sodium nitroprusside, respectively. However, after inhibition of cyclooxygenase and nitric oxide synthase with aspirin and NG-monomethyl-L-arginine, the forearm blood flow response to bradykinin (P = 0.003), but not to sodium nitroprusside (not significant), was significantly suppressed by miconazole. Thus nitric oxide- and prostaglandin-independent, bradykinin-mediated forearm vasodilation is suppressed by high intravascular K+ concentrations, indicating a contribution of EDHF. In the human forearm microvasculature, EDHF appears to be a cytochrome P-450 derivative, possibly an epoxyeicosatrienoic acid.
منابع مشابه
Effect of Sulfaphenazole on Tissue Plasminogen Activator Release in Normotensive Subjects and Hypertensive Patients
Background—A nitric oxide–independent response, possibly mediated by hyperpolarization, regulates vascular tone, acting as a compensatory mechanism in the presence of impaired nitric oxide availability. Cytochrome P450 2C9 (CYP 2C9) is a source of endothelium-derived hyperpolarizing factors and modulates tissue-type plasminogen activator (tPA) release from endothelial cells; however, no effect ...
متن کاملLetter by Brown and Pretorius regarding article, "effect of sulfaphenazole on tissue plasminogen activator release in normotensive subjects and hypertensive patients".
BACKGROUND A nitric oxide-independent response, possibly mediated by hyperpolarization, regulates vascular tone, acting as a compensatory mechanism in the presence of impaired nitric oxide availability. Cytochrome P450 2C9 (CYP 2C9) is a source of endothelium-derived hyperpolarizing factors and modulates tissue-type plasminogen activator (tPA) release from endothelial cells; however, no effect ...
متن کاملRole of endothelium-derived hyperpolarizing factor in human forearm circulation.
Endothelium-derived hyperpolarizing factor (EDHF) contributes to endothelium-dependent relaxation of isolated arteries, but it is not known whether this also occurs in the case of humans in vivo. The present study examined the role of EDHF in human forearm circulation. Forearm blood flow (FBF) was measured by strain-gauge plethysmography in 31 healthy, normal subjects (mean+/-SE age, 23+/-2 yea...
متن کاملEndothelium-derived hyperpolarizing factor in coronary microcirculation: responses to arachidonic acid.
In coronary resistance vessels, endothelium-derived hyperpolarizing factor (EDHF) plays an important role in endothelium-dependent vasodilation. EDHF has been proposed to be formed through cytochrome P-450 monooxygenase metabolism of arachidonic acid (AA). Our hypothesis was that AA-induced coronary microvascular dilation is mediated in part through a cytochrome P-450 pathway. The canine corona...
متن کاملC-type natriuretic peptide-induced vasodilation is dependent on hyperpolarization in human forearm resistance vessels.
Animal studies have demonstrated that CNP causes endothelium-independent vasodilation, which is limited by neutral endopeptidase (NEP) activity. However, the vasodilating mechanism of CNP in humans is still unknown. Therefore, we investigated the vasodilator actions of CNP in human forearm resistance vessels before and after inhibition of nitric oxide (NO) and then prostacyclin production and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 280 6 شماره
صفحات -
تاریخ انتشار 2001